AVIS DE SOUTENANCE DE THESE

Pour confirmation des horaires et lieu de soutenance de la thèse par le doctorant et diffusion
via Internet par le service des études doctorales à une liste préétablie de destinataires

DATE ET HEURE de la soutenance de la thèse : mardi 15 janvier 2019 à 14h00

Soutenance de Andrej SULER pour une thèse de DOCTORAT de l’Université Grenoble Alpes,
specialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES

Intitulé de la thèse : « Développement d’un pixel photogate éclairé par la face arrière »

Lieu de soutenance de la Thèse : Phelma Minatec - 3 Parvis Louis Néel - 38000 Grenoble - salle 04-513

Thèse préparée dans le laboratoire : UMR 5130 - Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d’hyperfréquences et de caractérisation,
sous la direction de Panagiota MORFOULI, directeur de thèse et Laurent MONTES Co-encadrant.

Membres du jury :
- GUO-NENG LU - Rapporteur
- HELENE TAP - Rapporteur
- YVON CAZAUX - Examinateur
- JEAN-EMMANUEL BROQUIN - Examinateur

Résumé de thèse :

Les capteurs d’images cherchent de nos jours non seulement à être performants mais également à être adaptés à leur environnement et à de nouvelles utilisations. On peut évoquer le cas des machines et véhicules autonomes par exemple.

En raison de la qualité d’image et son coût, une vaste majorité des applications ont aujourd’hui adopté l’usage des pixels CMOS actifs à photodiodes pincées et à illumination par la face arrière. L’originalité de la solution proposée dans ce manuscrit repose l’intégration d’une photogate, utilisée par les capteurs CCD, au sein d’un pixel CMOS. Son utilisation optimise alors l’espace disponible dans le pixel et diminue le nombre d’implantation nécessaire à sa réalisation. Ce développement a également conduit à l’emploi d’une grille de transfert spécifique. Ces deux nouvelles structures auront toutes les deux été élaborées durant cette thèse notamment à l’aide de simulations et de structures de test. La caractérisation de ce nouveau pixel aura démontré de nombreux atouts : entre autres, l’augmentation de la charge à saturation et la réduction du courant d’obscurité. De plus, l’étude détaillée du courant d’obscurité indique une distribution davantage centrée. Celle-ci permet l’identification de contaminants et une meilleure tenue en température en comparaison à une photodiode classique. De nombreuses perspectives s’offrent à la structure telle que la réduction du pas du pixel ou son utilisation dans un environnement contraint en température.

Fait à Grenoble, le

Le doctorant Andrej SULER