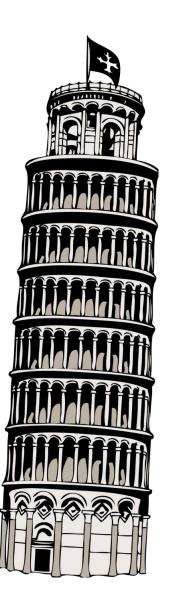
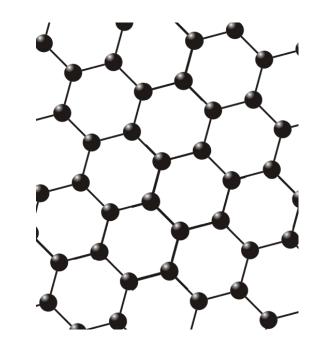
2D materials: An introduction

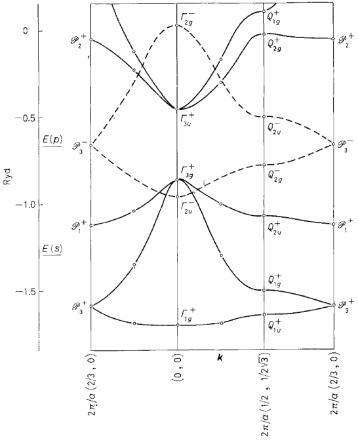
Alessandro Cresti

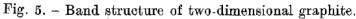
alessandro.cresti@grenoble-inp.fr IMEP-LaHC / Grenoble INP / CNRS / Univ. Grenoble Alpes / Univ. Savoie Mont Blanc





Some years ago in Pisa...


...I was a PhD student and my advisor told me...



2005

Band Structure and Optical Properties of Graphite and of the Layer Compounds GaS and GaSe (*).

F. BASSANI (**) and G. PASTORI PARRAVICINI (**)

[Nuovo Cim. B 50, 95 (1967)]

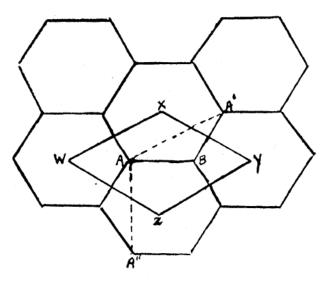
PHYSICAL REVIEW

VOLUME 71, NUMBER 9

MAY 1, 1947

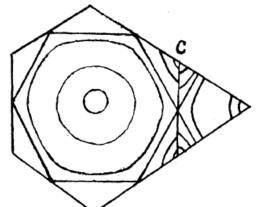
1947

The Band Theory of Graphite


P. R. WALLACE*

National Research Council of Canada, Chalk River Laboratory, Chalk River, Ontario

Philip R. Wallace



3. NUMBER OF FREE ELECTRONS AND CONDUC-TIVITY OF A SINGLE HEXAGONAL LAYER

 $|E-E_c|\approx\sqrt{3}\pi\gamma_0a|\mathbf{k}-\mathbf{k}_c|$

Linear mass-less relativistic dispersion

PHYSICAL REVIEW

VOLUME 104, NUMBER 3

NOVEMBER 1, 1956

1956

Diamagnetism of Graphite

J. W. MCCLURE

Using the abbreviation s = eH/hc, we may then write

 $\kappa_n = [(2n+1)s]^{\frac{1}{2}}, \quad \epsilon_n = \pm \hbar v [(2n+1)s]^{\frac{1}{2}}.$ (2.3)

Relativistic Landau levels in graphene

Results for graphene were just a side product of those for graphite... graphene should not exist!

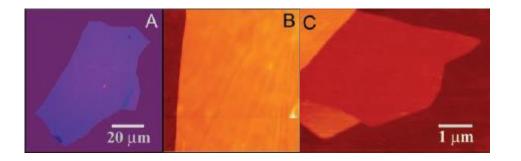
Landau and Peierls predicted strictly 2D and infinitely extended materials to be unstable due to thermal fluctuations. R. PEIERLS **1935** Quelques propriétés typiques des corps solides Annales de l'I. H. P., tome 5, nº 3 (1935), p. 177-222

Indeed, real 2D materials have a finite size and may show 3D warping!

2004

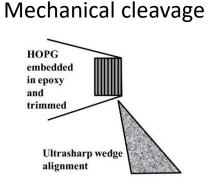
Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,¹ A. K. Geim,^{1*} S. V. Morozov,² D. Jiang,¹ Y. Zhang,¹ S. V. Dubonos,² I. V. Grigorieva,¹ A. A. Firsov²

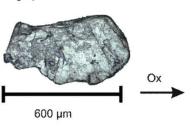

22 OCTOBER 2004 VOL 306 SCIENCE

A. Geim

K. Novoselov

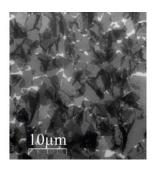

2010 Nobel Prize

"for groundbreaking experiments regarding the two-dimensional material graphene"



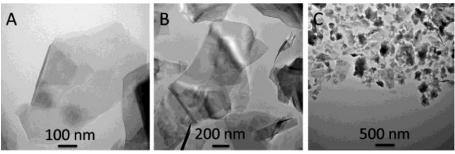
Ozyilmaz's Group, National University of Singapore - https://www.youtube.com/watch?v=rphiCdR68TE

Exfoliated graphene


[Nanoscale Res. Lett. 6, 95 (2011)]

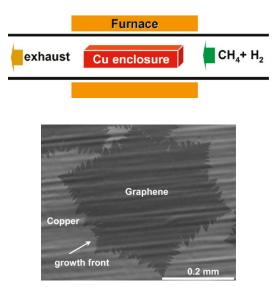
graphite

Graphite oxide reduction

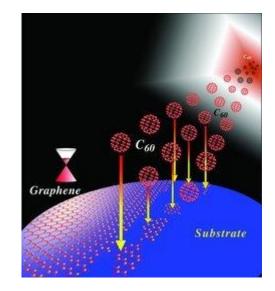


[S. Eigler et al., Adv. Mat. 25, 3583 (2013)]

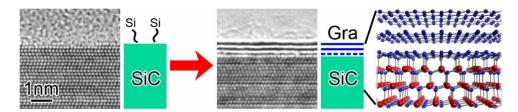
Shearing in liquid


Sonication

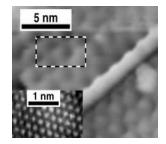
[S. J. Woltornist et al., ACS Nano 7, 7062 (2013)]


Epitaxial graphene

Chemical vapor deposition (CVD)

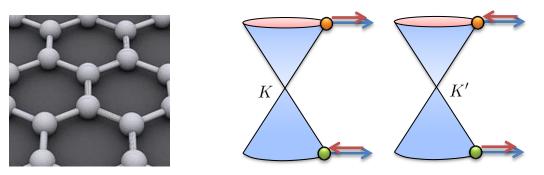

[X. Li et al., J. Am. Chem. Soc. 133, 2816 (2011)]

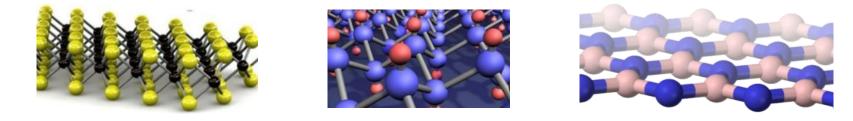
Molecular beam epitaxy (MBE)



[J. Park et al., Adv. Mater. 22, 4140 (2010)]

Thermal decomposition on the (0001)surface of 6H-SiC

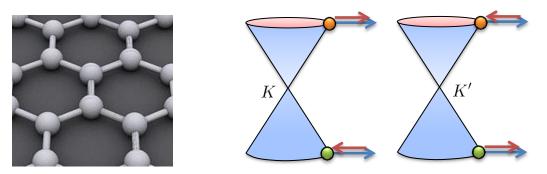

[W. Norimatsu et al., Semicond. Sci. Technol. 29, 064009 (2014)]


[C. Berger et al., J. Phys. Chem. B 108, 19913 (2004)]

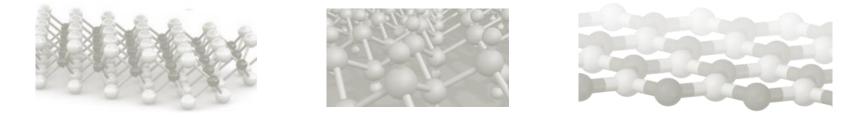
Plan

• Graphene: structure and properties

• Other 2D materials: TMDs, SMCs, X-enes, X-anes...

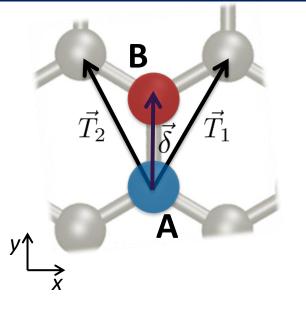


• Applications of 2D materials: electronics, optoelectronics, spintronics and many more



Plan

• Graphene: structure and properties


• Other 2D materials: TMDs, SMCs, X-enes, X-anes...

 Applications of 2D materials: electronics, optoelectronics, spintronics and many more

Graphene lattice and reciprocal space

triangular lattice with basis (2 atoms per unit cell)

$$\vec{T}_1 = \begin{bmatrix} \frac{\sqrt{3}}{2}a\\ \frac{3}{2}a \end{bmatrix} \qquad \vec{T}_2 = \begin{bmatrix} -\frac{\sqrt{3}}{2}a\\ \frac{3}{2}a \end{bmatrix} \qquad \vec{\delta} = \begin{bmatrix} 0\\ a \end{bmatrix}$$

K

K

Τ

K

 k_v^{η}

hexagonal Brillouin zone

Reciprocal space

$$\vec{G}_i \cdot \vec{T}_j = 2\pi \delta_{ij}$$

$$\vec{G}_1 = \begin{bmatrix} \frac{2\pi}{\sqrt{3}a} \\ \frac{2\pi}{3a} \end{bmatrix} \quad \vec{G}_2 = \begin{bmatrix} -\frac{2\pi}{\sqrt{3}a} \\ \frac{2\pi}{3a} \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} 0\\0 \end{bmatrix} \quad K = \begin{bmatrix} \frac{4\pi}{3\sqrt{3a}}\\0 \end{bmatrix} \quad K' = \begin{bmatrix} \frac{-4\pi}{3\sqrt{3a}}\\0 \end{bmatrix}$$

K

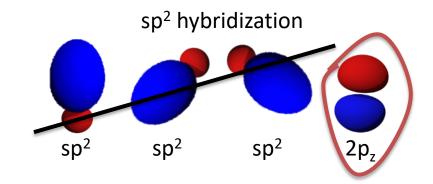
K'

K'

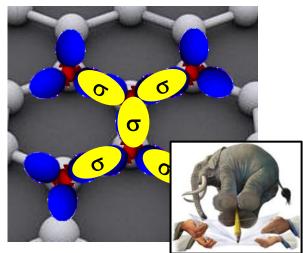
A convenient orbital basis for graphene

The sp² orbitals form strong covalent σ bonds, which give mechanical stability to graphene and have high energy.

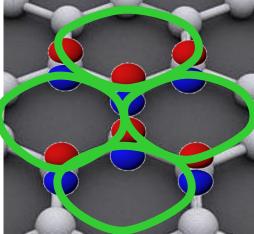
235 268 302 335 369


402 436 469

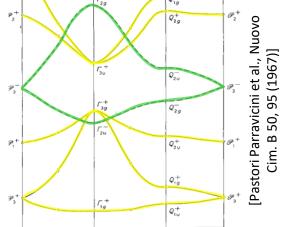
 E^{2D} (N/m)


[D. G. Papageorgiou et al., Prog. Mat. Science 90, 75 (2017)]

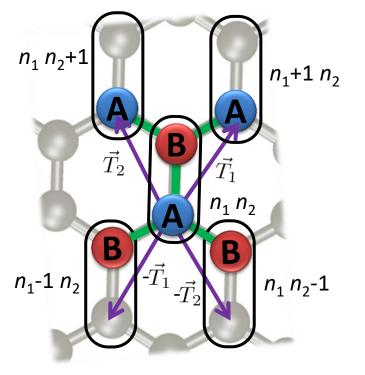
A convenient orbital basis for graphene



 $\sigma\,\text{bonds}$


The sp² orbitals form strong covalent σ bonds, which give mechanical stability to graphene and have high energy.

 π bonds


The $2p_z$ orbitals form weaker and delocalized π bonds, which have low energy and determine the electronic properties.

complete band structure

For the description of the electron properties around the charge neutrality point, we can limit to $2p_z$ orbitals.

Graphene first-nearest-neighbor tight-binding Hamiltonian

 $\begin{aligned} &|\Phi^{A}(\vec{k})\rangle = \frac{1}{\sqrt{N}} \sum_{n_{1}n_{2}} e^{i\vec{k}\cdot(n_{1}\vec{T}_{1}+n_{2}\vec{T}_{2})} |\phi^{A}_{n_{1}n_{2}}\rangle \\ &|\Phi^{B}(\vec{k})\rangle = \frac{1}{\sqrt{N}} \sum_{n_{1}n_{2}} e^{i\vec{k}\cdot(n_{1}\vec{T}_{1}+n_{2}\vec{T}_{2})} |\phi^{B}_{n_{1}n_{2}}\rangle \end{aligned}$

Generic state with vector k

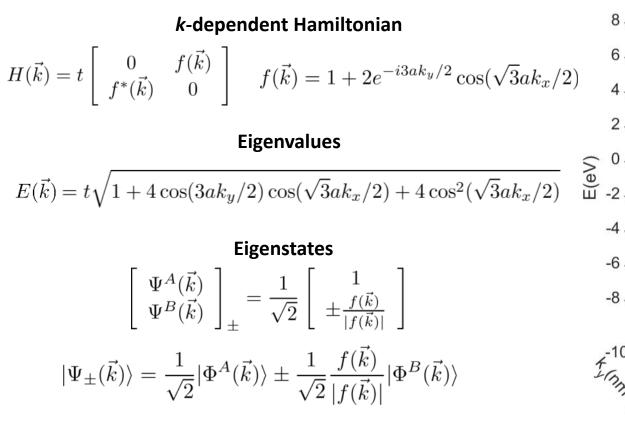
$$|\Psi(\vec{k})\rangle = \Psi^A(\vec{k}) |\Phi^A(\vec{k})\rangle + \Psi^B(\vec{k}) |\Phi^B(\vec{k})\rangle$$

basis : 2p_z orbital per carbon atom $|\phi_{n_1n_2}^A\rangle = |\phi_{2p_z}(n_1\vec{T_1} + n_2\vec{T_2})\rangle$

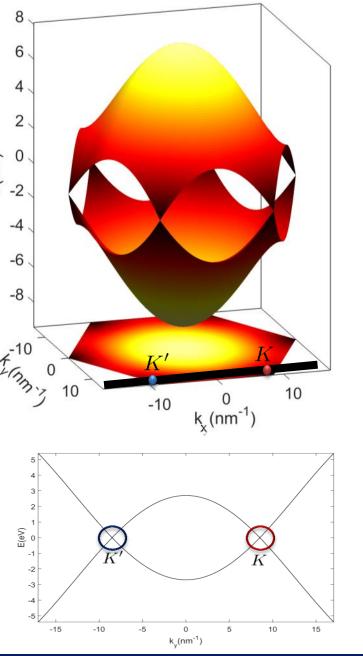
$$|\phi^B_{n_1n_2}\rangle = |\phi_{2p_z}(n_1\vec{T_1} + n_2\vec{T_2} + \vec{\delta})\rangle$$

first-nearest-neighbor tight-binding Hamiltonian

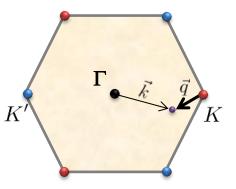
$$H|\phi_{n_{1}n_{2}}^{A}\rangle = t|\phi_{n_{1}n_{2}}^{B}\rangle + t|\phi_{n_{1}-1,n_{2}}^{B}\rangle + t|\phi_{n_{1},n_{2}-1}^{B}\rangle$$
$$H|\phi_{n_{1}n_{2}}^{B}\rangle = t|\phi_{n_{1}n_{2}}^{A}\rangle + t|\phi_{n_{1}+1,n_{2}}^{A}\rangle + t|\phi_{n_{1},n_{2}+1}^{A}\rangle$$


k-dependent Hamiltonian

$$H|\Phi^A(\vec{k})\rangle = t\left(1 + e^{-i\vec{k}\cdot\vec{T}_1} + e^{-i\vec{k}\cdot\vec{T}_2}\right)|\Phi^B(\vec{k})\rangle$$


$$H|\Phi^{B}(\vec{k})\rangle = t\left(1 + e^{i\vec{k}\cdot\vec{T}_{1}} + e^{i\vec{k}\cdot\vec{T}_{2}}\right)|\Phi^{A}(\vec{k})\rangle$$
$$H(\vec{k}) = t\left[\begin{array}{c}0 & f(\vec{k})\\f^{*}(\vec{k}) & 0\end{array}\right]$$

$$H(\vec{k}) \left[\begin{array}{c} \Psi^A(\vec{k}) \\ \Psi^B(\vec{k}) \end{array} \right] = E(\vec{k}) \left[\begin{array}{c} \Psi^A(\vec{k}) \\ \Psi^B(\vec{k}) \end{array} \right]$$


Graphene energy bands

- two components (A/B): pseudospin
- semimetal = zero band-gap semiconductor
- linear isotropic dispersion (cones) at K and K' points
- low-energy physics around K and K'

Graphene – low energy approximation

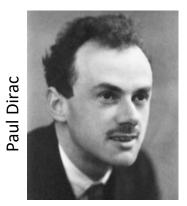
For wave vectors close to the K point

$$\vec{k} = \vec{K} + \vec{q} = \left[\frac{4\pi}{3\sqrt{3}a} + q_x \; ; \; q_y\right]$$

$$f(\vec{k}) = f(\vec{K} + \vec{q}) = 1 + 2e^{-i3aq_y/2}\cos(2\pi/3 + \sqrt{3}aq_x/2) \approx -\frac{3}{2}a(q_x - iq_y)$$

Pauli matrices operating on pseudospin

$$H_K(\vec{q}) \equiv H(\vec{K} + \vec{q}) \approx -\frac{3}{2}at \begin{bmatrix} 0 & q_x - iq_y \\ q_x + iq_y & 0 \end{bmatrix} = -\frac{3}{2}at \vec{\sigma} \cdot \vec{q}$$


2D Dirac equation for relativistic particles with spin 1/2

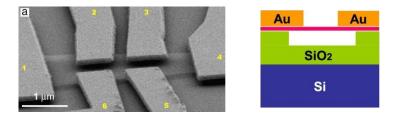
$$H_{2D}^{\text{Dirac}}(\vec{k}) = \hbar c \ \vec{\sigma} \cdot \vec{k} + mc^2 \sigma_z \qquad E(\vec{k}) = \pm \sqrt{\hbar^2 c^2 k^2 + c^4 m^2}$$

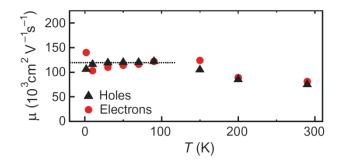
- **spin** (Dirac equation) ↔ **pseudospin** (sublattice degree of freedom for graphene)
- subluminal velocity $v = \frac{3}{2} \frac{a|t|}{\hbar} \approx c/300$ **K and K' = Dirac points**

K and K' = Dirac points linear energy dispersion = Dirac cones

• zero mass m=0

Consequences of graphene band structure: charge mobility




The Fermi velocity is much larger than in other standard materials as silicon (~100 larger): high charge mobility

electric field current density electron density $v_d = \mu E \rightarrow J = e(n \mu_e + p \mu_h) E$ drift velocity

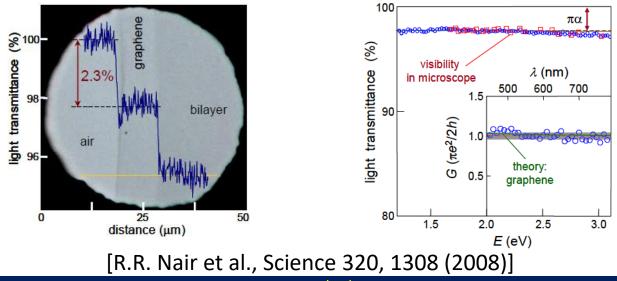
Exfoliated graphene over SiO₂ $\mu \le 25\ 000\ \text{cm}^2/(\text{Vs})$ @ n = 5 x 10¹² cm⁻² [PRL 99, 246803 (2007)]

Suspended exfoliated graphene μ = 230 0000 cm²/(Vs) @ n = 2 x 10¹¹ cm⁻² [Sol. State Comm. 146, 351 (2008)]

CVD graphene encapsulated in hBN $\mu > 100\ 000\ \text{cm}^2/(\text{Vs})$ [Science Adv. 1, e1500222 (2015)]

Crystalline silicon $\mu \approx 1500 \text{ cm}^2/(\text{Vs})$ @300K - AlGaAs/GaAs 2DEGs $\mu \approx 35000000 \text{ cm}^2/(\text{Vs})$

Consequences of graphene band structure: optical absorption

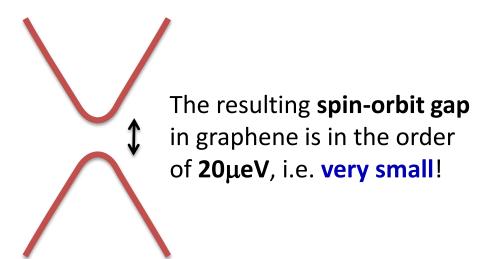

$$\mathbf{E} = \mathbf{e}Ee^{i\omega t} \qquad W_i = \frac{c}{4\pi}E^2 \qquad W_a = \eta\hbar\omega \qquad \eta = \frac{2\pi}{\hbar}|M|^2\rho\left(\frac{\hbar\omega}{2}\right)$$

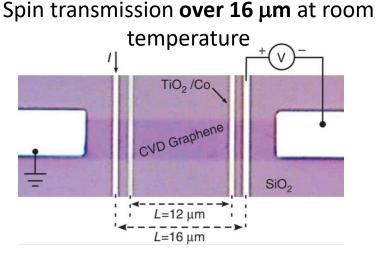
$$\rho\left(\frac{\hbar\omega}{2}\right) = \frac{\hbar\omega}{\pi\hbar^2 v_F^2} \qquad H = v_F\boldsymbol{\sigma}\cdot\boldsymbol{\pi} = v_F\boldsymbol{\sigma}\cdot\left(\boldsymbol{p} - \frac{e}{c}\boldsymbol{A}\right) = H_0 + H_{\text{int}}$$

$$A = \frac{i}{c\omega}\boldsymbol{E} \leftarrow \boldsymbol{E} = c\partial_t\boldsymbol{A} \qquad H_{\text{int}} = -\frac{ev_F}{c}\boldsymbol{\sigma}\cdot\boldsymbol{A} = -i\frac{ev_F}{c\omega}E\boldsymbol{\sigma}\cdot\boldsymbol{e}$$

$$|M|^2 = \left|\left\langle f|\frac{ev_F}{i\omega}E\boldsymbol{\sigma}\cdot\boldsymbol{e}|i\right\rangle\right|^2 = \frac{e^2v_F^2E^2}{8\omega^2} \qquad W_a = \frac{e^2}{4\hbar}E^2 \rightarrow \frac{W_a}{W_i} = \frac{\pi e^2}{\hbar c} = \pi\alpha$$

Constant optical absorption ~2.3% over a wide spectrum

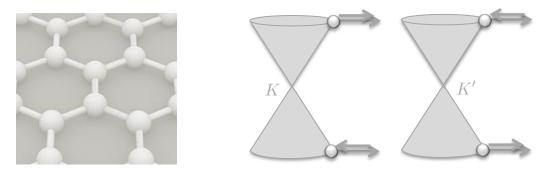

IMEP-LaHC Seminar 20/05/2020


Spin-orbit coupling in the graphene

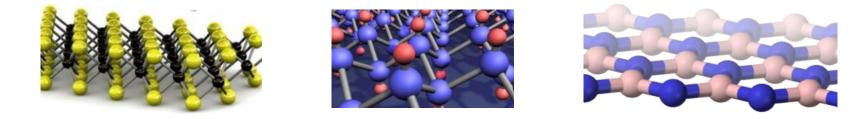
A **moving magnetic dipole generates an electric dipole**, which interacts with the electric field.

$$H_{I} = -\frac{e\hbar}{4m^{2}c^{2}} \left(\vec{\nabla}V \times \vec{p}\right) \cdot \vec{s} = \begin{cases} -\frac{e\hbar}{4m^{2}c^{2}} \frac{\partial_{r}V(r)}{r} \vec{L} \cdot \vec{s} & \text{intrinsic SOC} \\ \\ \frac{e\hbar}{4m^{2}c^{2}} (\vec{p} \times \vec{s}) \cdot \vec{E} & \text{Rashba SOC} \end{cases}$$

As a consequence, spin-orbit coupling couples π , σ and higher energy bands.

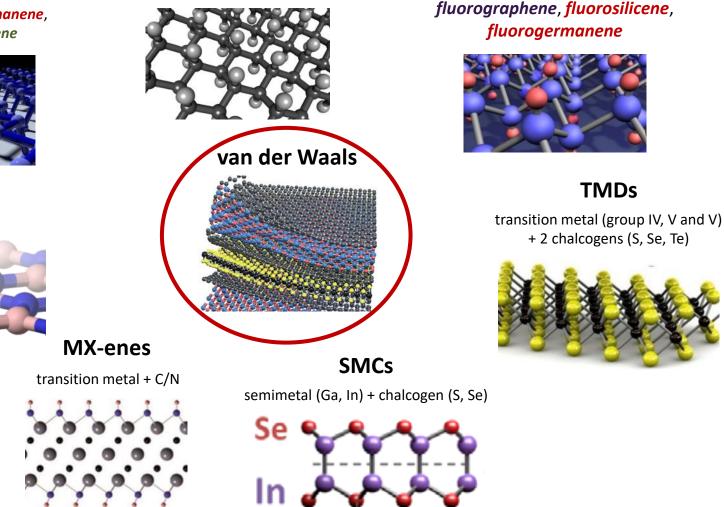


[M. V. Kamalakar et al., Nat. Comm. 6, 6766 (2015)]


[H. Min et al., PRB 74, 165310 (2006); S. Konschuh et al., PRB 82, 245412 (2010)]

• Graphene: structure and properties

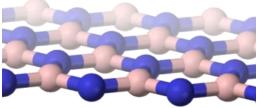
• Other 2D materials: TMDs, SMCs, X-enes, X-anes...

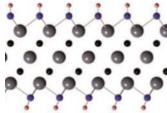

 Applications of 2D materials: electronics, optoelectronics, spintronics and many more

Many 2D materials

X-anes

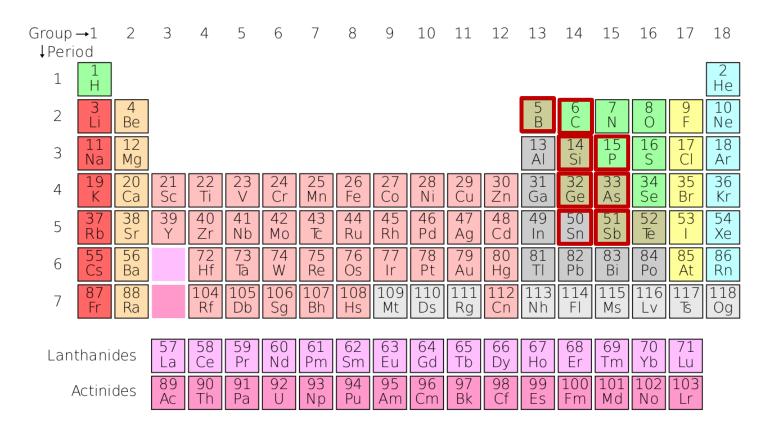
graphane, silicane, germanane, phosphorane, stanane


Fluoro-X-enes


X-enes

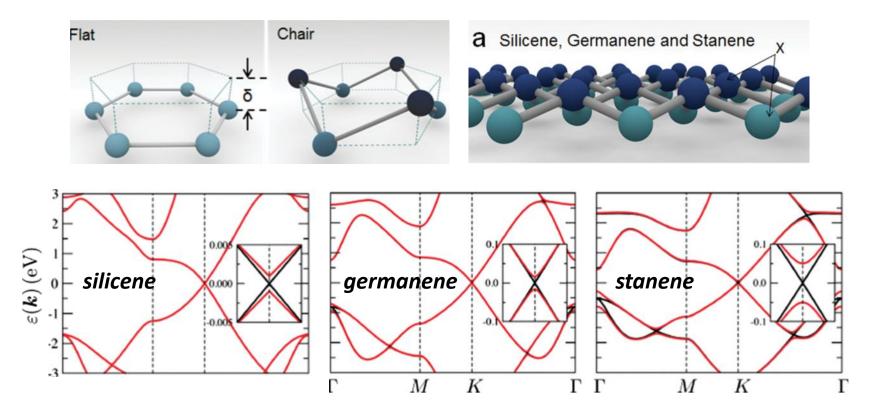
graphene, silicene, germanene, phosphorene, stanene

hBN



[P. Miró, M. Audiffred and T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43, 6537 (2014)]

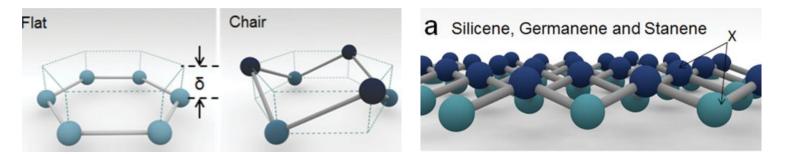
X-enes group


Single-layer single-element materials with hexagonal lattice.

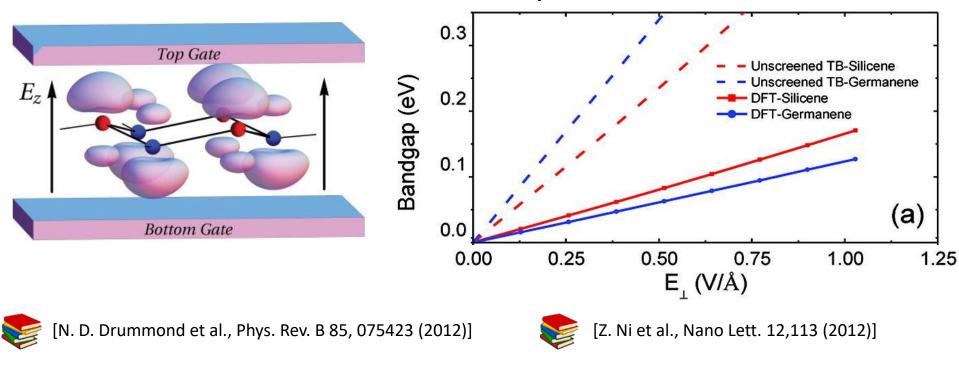
graphene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, borophene...

X-enes group XIV: silicene, germanene, stanene

Si, Ge and Sn have an sp²-sp³ hybridization, which leads to a buckled structure.

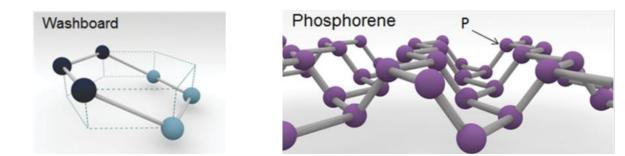


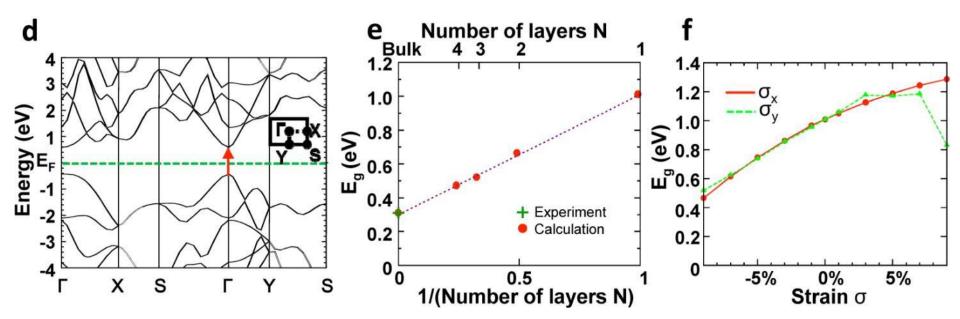
	c 61		60	6.2
	C	Si	Ge	Sn
Lattice constant a (nm)	0.2468	0.3868	0.4060	0.4673
Bond length d (nm)	0.1425	0.2233	0.2344	0.2698
Buckling parameter δ (nm)	0	0.045	0.069	0.085
Effective electron mass M^{\star} (m ₀)	0	0.001	0.007	0.029
Fermi velocity of carriers $V_{\rm F}$ (10 ⁶ ms ⁻¹)	1.01	0.65	0.62	0.55
Energy gap E _g (meV)	0.02	1.9	33	101



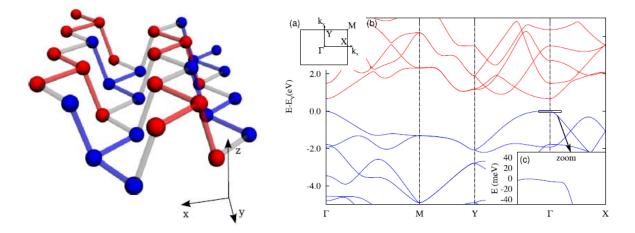
X-enes group XIV: silicene, germanene, stanene

Si, Ge and Sn have an sp²-sp³ hybridization, which leads to a buckled structure.

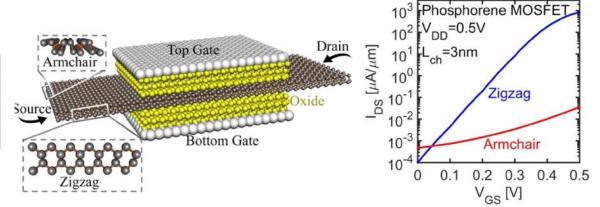



A vertical electric field creates a staggered potential on A/B sublattice and generates a mass term in the Dirac equation!

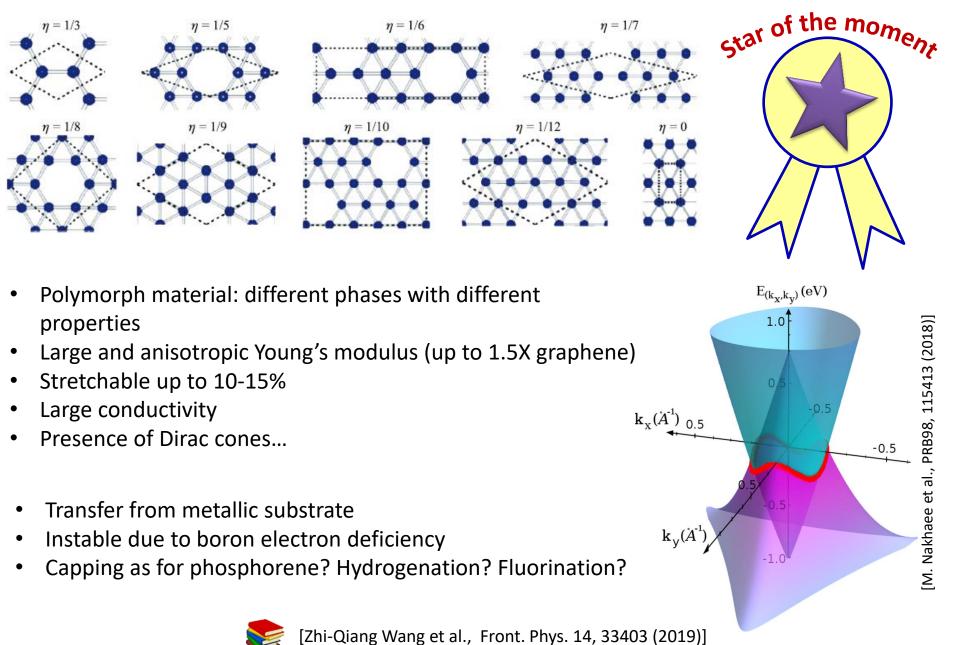
X-enes group XIV: phosphorene, arsenene, antimonene

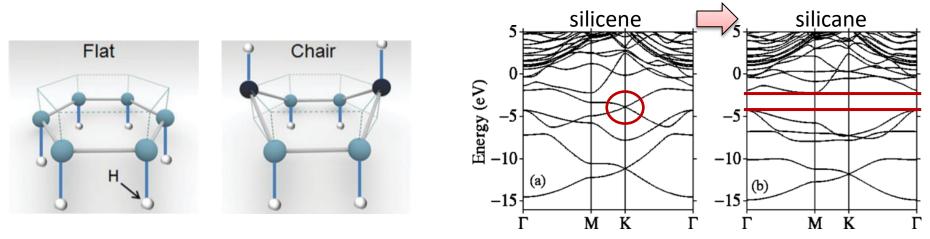

Its structure is puckered and it is a semiconductor!

[Balendhran et al., Small 11, 640 (2015)] [H. Liu et al., ACS Nano, 8, 4033 (2014)]


X-enes group XIV: spatial anisotropy in phosphorene

[A. S. Rodin, A. Carvalho, and A. H. Castro Neto., Phys. Rev. Lett. 112, 176801 (2014)]

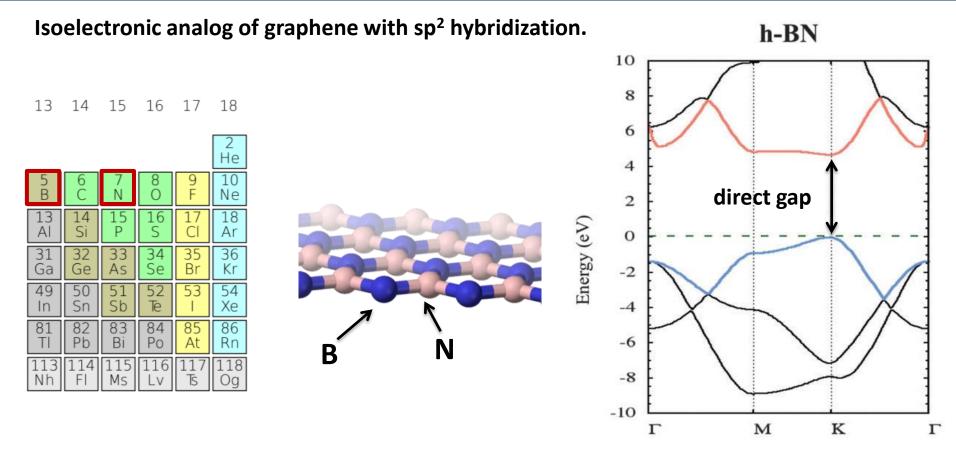

m [*] _{e,arm}	$m_{e,zig}^*$	m [*] _{h,arm}	$m^*_{h,zig}$	Ref.
0.17	1.09	0.15	5.84	ТВ
0.17	1.12	0.15	6.35	HSE06 ²⁶
0.14	1.23	0.13	13.09	PBE ²⁷


[H. Ilatikhameneh, T. Ameen, B. Novakovic, Y. Tan, G. Klimeck, R. Rahman, *Saving Moore's Law Down To 1 nm Channels With Anisotropic Effective Mass*, Scientific Reports 6, 31501 (2016)]

X-enes group XIII: borophene

X-anes: hydrogeneted X-enes

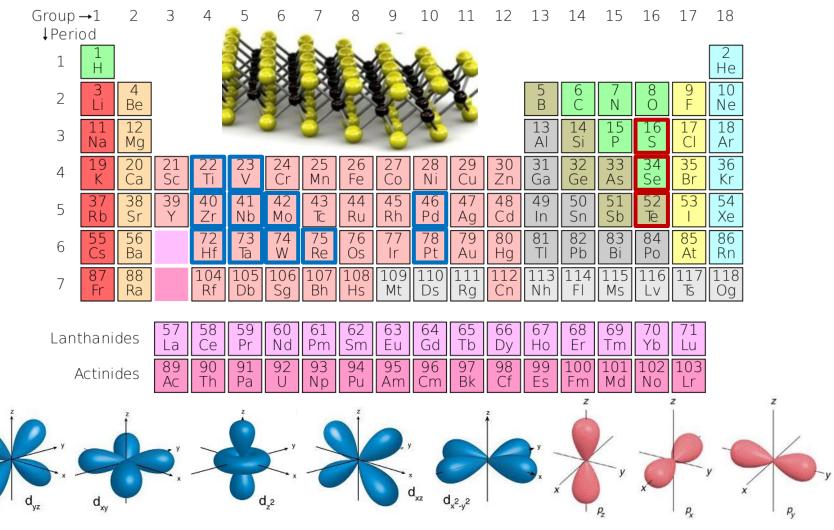
X-enes decorated with H covalently bonded to each atom of the layer


A gap opens due to covalent bonding and the Dirac cones disappear!

no spin-orbit coupling is considered here	СН	SiH	GeH
Lattice constant a (nm)	0.2514	0.3820	0.4091 ^[21]
Metal-metal length d (nm)	0.1520	0.2319	0.2338
Metal-hydrogen length (nm)	0.1084	0.1502	0.1530
Buckling parameter δ (nm)	0.045	0.072	0.069
Fermi velocity of carriers $V_{\rm F}$ (10 ⁶ ms ⁻¹)	0.63	0.51	0.38
Energy gap E_{g} (eV)	4.9 ^{b)} , 5.4 ^{c)[27]}	2.9 ^{b)} , 4.0 ^{c)[28]}	2.9 ^{b)} , 3.6 ^{c)[28]}

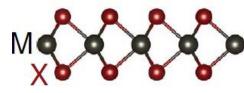
[Balendhran et al., Small 11, 640 (2015)] [H. Liu et al., ACS Nano, 8, 4033 (2014)] [L. C. Lew Yan Voon et al, Appl. Phys. Lett. 97, 163114 (2010)]

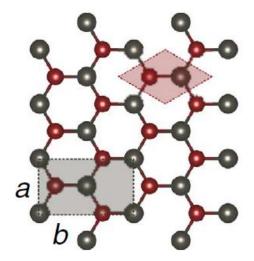
h-BN: hexagonal boron nitride

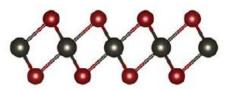


- Due to the different electronegativity of B and N, the two sublattices are no more equivalent and a gap opens!
- The lattice parameter is very similar to that of graphene: excellent substrate

[P. Miró, M. Audiffred and T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43, 6537 (2014)]

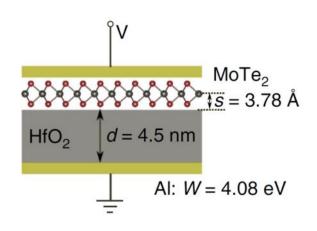

Transition metal dichalcogenides (TMDs)


MX₂ where M is a transition metal (partially filled d sub-shell) and X a chalcogen (S, Se, Te).



 [F. A. Rasmussen and K. S. Thygesen, Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides, J. Phys. Chem. C 119, 13169 (2015)]
 [S. Manzeli et al., 2D transition metal dichalcogenides, Nature Reviews Materials 2, 17033 (2017)]

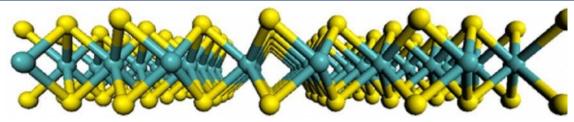
Transition metal dichalcogenides: 2H, 1T and 1T' phases



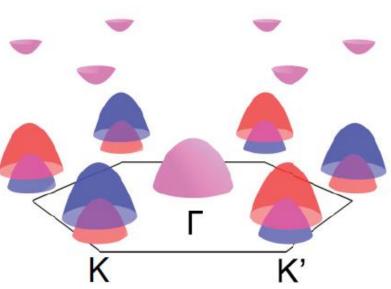
2H : trigonal prismatic

1T : distorted octahedral

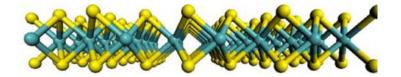
1T' : dimerized 1T

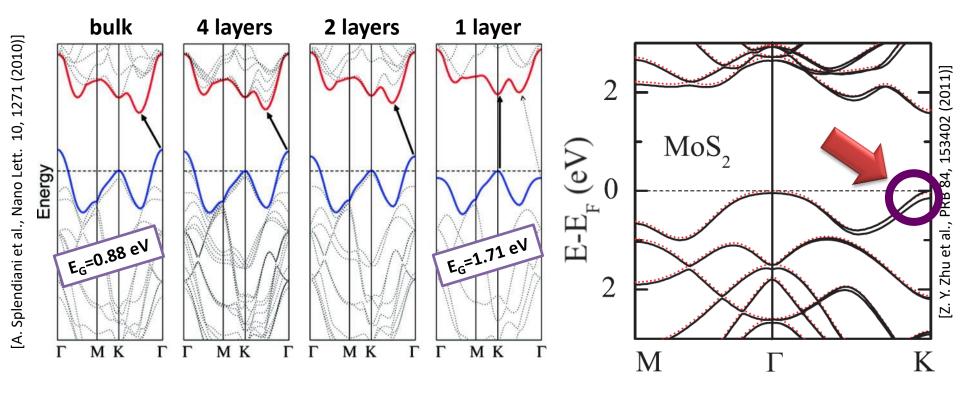

In some materials, the phase is predicted to be **switchable** by an electric field!

[Y. Li et al., Nat. Comm. 7, 10671 (2016)]


Transition metal dichalcogenides: group VI

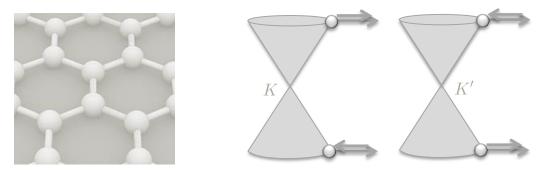
2H phase, semiconductor MoS₂ / MoSe₂ / WS₂ / WSe₂

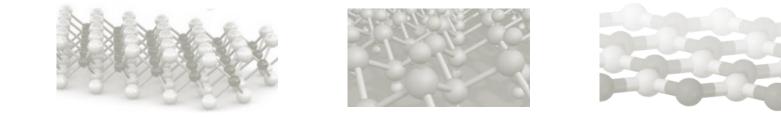



- Conduction band minima and valence band maxima at K and K' points of the Brillouin zone: direct gap
- Strong spin-orbit coupling due to heavy atoms

- Lack of inversion symmetry in the 2H phase: strong spin-splitting at K/K' points (inversion symmetry recovered for bilayer!)
 - Time reversal symmetry $E^{\uparrow}(k) = E^{\downarrow}(-k)$
 - Spatial inversion symmetry $E^{\uparrow}(k)=E^{\uparrow}(-k)$
- × → $E^{\uparrow}(k)=E^{\downarrow}(k)$ Kramer's degeneracy
- Spin-valley coupling:
 valley polarization = spin polarization

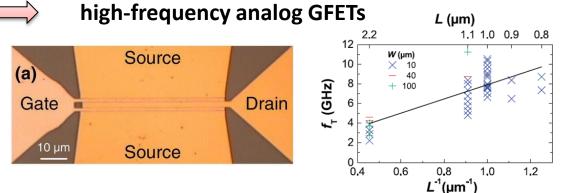
MoS₂ molybdenum disulfide (TMDs - group VI)




- The gap increases when decreasing the layer number and becomes direct
- The spin-orbit splitting of the valence band is ~150meV

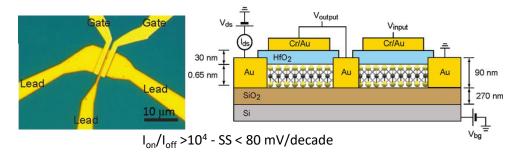
• Graphene: structure and properties

• Other 2D materials: TMDs, SMCs, X-enes, X-anes...


 Applications of 2D materials: electronics, optoelectronics, spintronics and many more

Electronics: field effect transistors

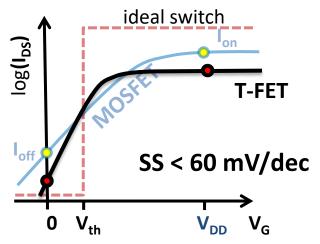
Graphene

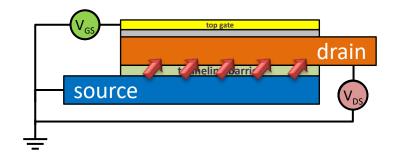

- ✓ high charge mobility
- ✓ excellent electrostatic control
- × no gap
- [E. Guerriero et al., Scient. Rep. 7, 2419 (2017)]

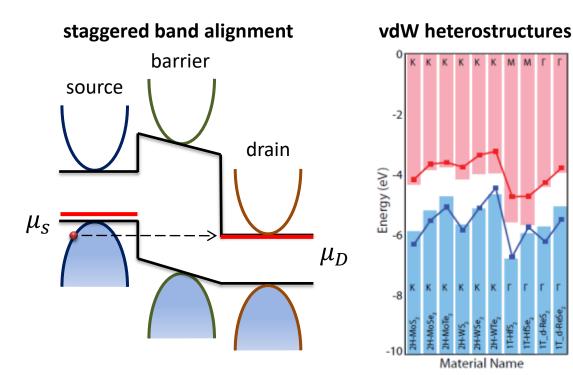
Transition metal dichalcogenides

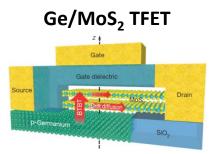
- ✓ excellent electrostatic control
- ✓ do have a gap
- ✓ self-passivated surface
- ✓ van der Waals heterostructures
- Iow mobility (not a problem for ultrascaled channel lengths)

Field effect transistors/integrated circuits for logic operations

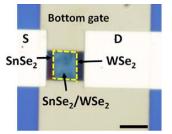



[B. Radisavljevic at al., ACS Nano 5, 9934 (2011)]

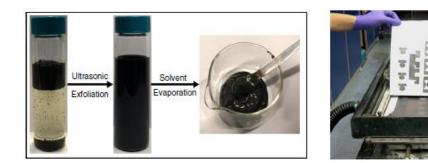

However

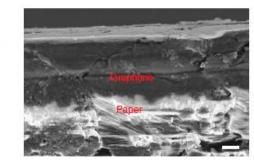

- not competitive with Si technology for high performance computing
- Ohmic contacts difficult to obtain

Electronics: low power tunnel field effect transistors



[D. Sarkar et al., Nature 526, 91 (2015)]

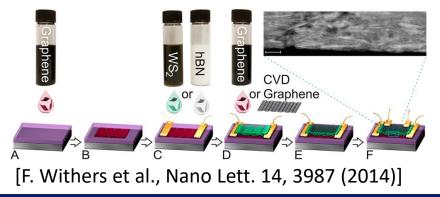

SnSe₂/WSe₂ vdW TFET



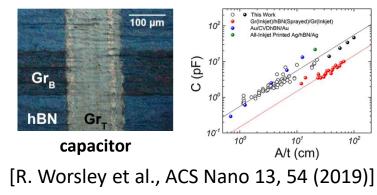
[T. Roy et al., APL 108, 083111 (2016)]

Printable, low-cost and flexible electronics

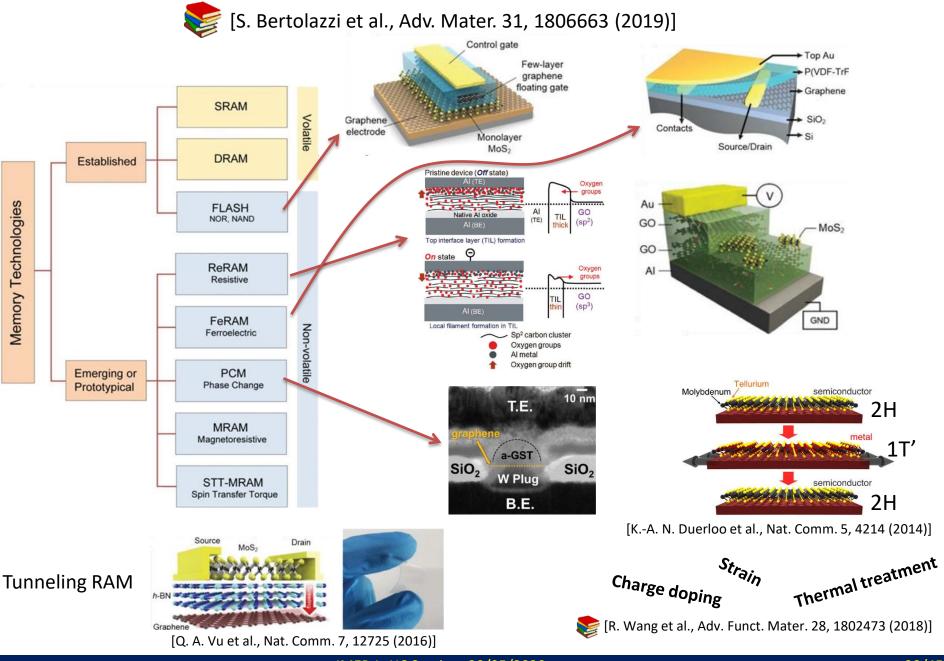
Graphene as low-cost printable conductive ink


Conductivity up to 7.13×10^4 S m⁻¹, (silver 10^6 S m⁻¹)

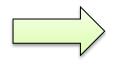
[K. Pan et al., Nat. Comm. 9, 5197 (2018)]



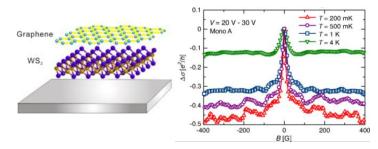
Graphene ink : RFIDs, antenna, wearables...



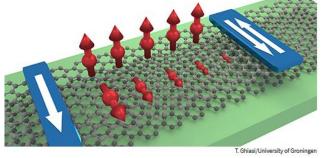
Ink and ink-jet printing of 2D heterostructures



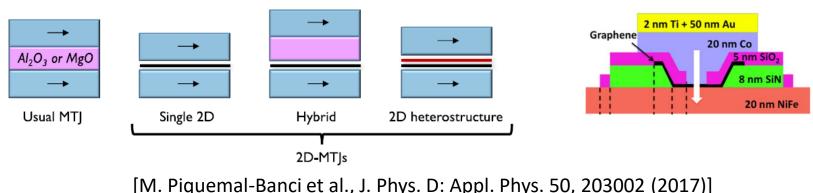
Electronics: non-volatile memories


Spin length > 10 μ m @room temperature for graphene over hBN

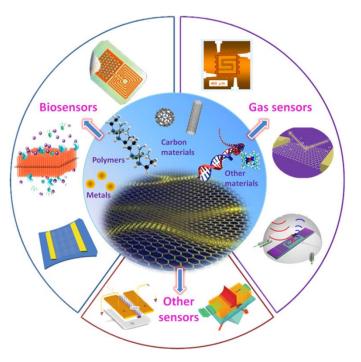
all-graphene-based spintronics


How to manipulate spin?

Proximity effect: inducing spin-orbit coupling in graphene on TMDs

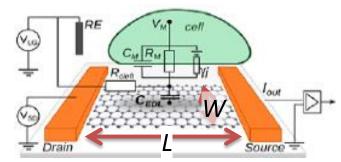

[T. Wakamura et al., Phys. Rev. Lett. 120, 106802 (2018)]

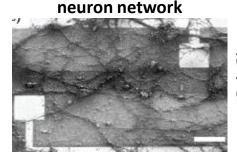
Electric-field induced spin relaxation anisotropy in bilayer graphene

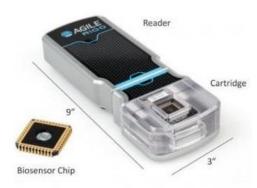


[J. C. Leutenantsmeyer, PRL 121, 127702 (2018)]

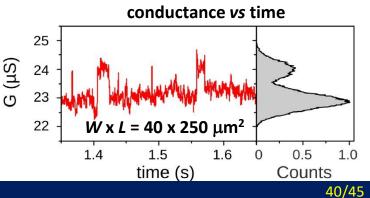
Magnetic tunnel junction for giant magnetoresistance




Graphene for sensing and health

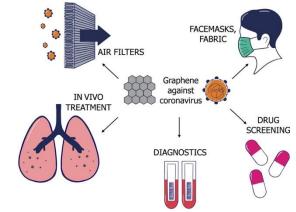

[X. Yu et al., Biosens. and Bioelec. 89, 77 (2017)] [C. Anichini et al., Chem. Soc. Rev. 47, 4860 (2018)]

In vivo sensing of neuron ion channel activity



AGILE R100 WORKFLOW

[F. Veliev et al., 2D Materials 5, 045020 (2018)]

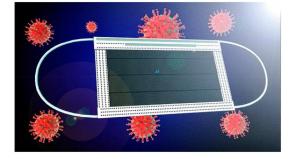

IMEP-LaHC Seminar 20/05/2020

Graphene & COVID-19

Can graphene take part in the fight against COVID-19?

V. Palmieri and M.Papi **Nanotoday** in press

https://doi.org/10.1016/j.nantod.2020.100883

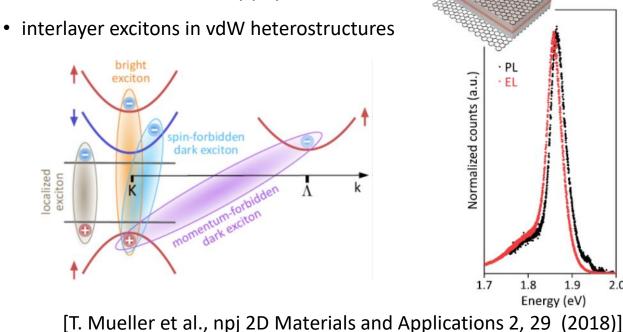

- Functionalized graphene can capture viruses and deliver antiviral drugs.
- Viruses on graphene can be inactivated by light or heat treatments.
- Graphene can be used as **coating material** for medical devices, personal protective equipment or facemasks to minimize the risk of transmission.
- Graphene-based **sensors c**an be embedded in textiles and environmental filters or used for high-throughput screening of virus helicase inhibitors.

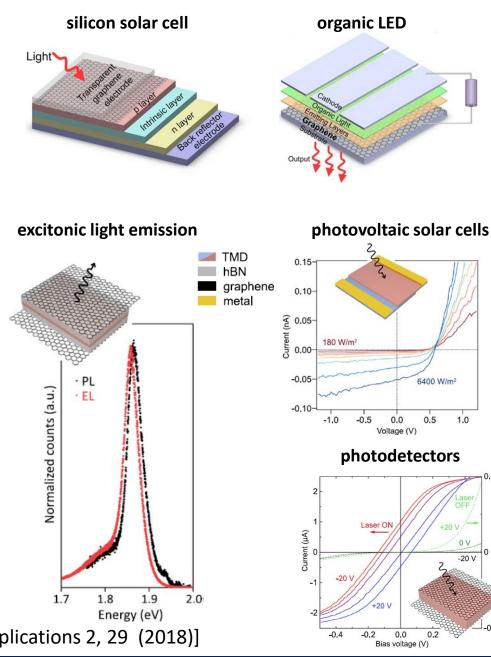
Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances

Hong Zhong, Zhaoran Zhu, Jing Lin, Chi Fai Cheung, Vivien L. Lu, Feng Yan, Ching-Yuen Chan, and Guijun Li*

www.acsnano.org

Optoelectronics

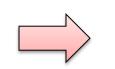

Graphene as an electrode


- transparent
- highly conductive
- flexible
- [F. Bonaccorso et al., Nat. Phot. 4, 611 (2010)]

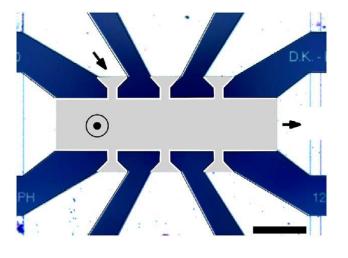
Excitons in transition metal dichalcogenides

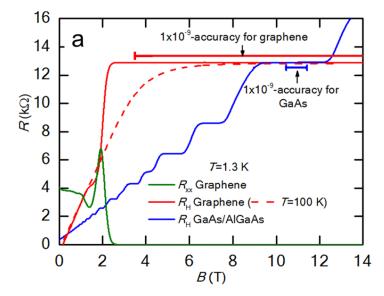
room temperature (binding energy ~0.5eV)

reach SOC and multivalley physics



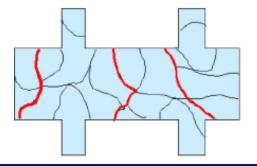
_-0.1


Metrology: graphene as a resistance standard

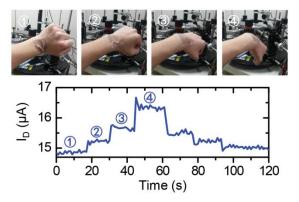

Energy spacing Landau levels

- GaAs-based Hall bars $\Delta E \approx 1.7 B[T]$ meV
- graphene-based $\Delta E \approx 35\sqrt{B[T]}$ meV

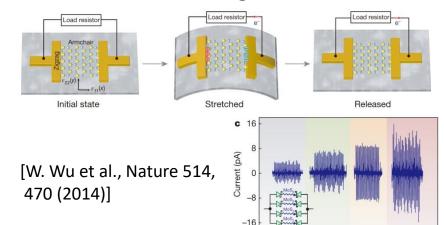
- low magnetic fields (B<4 T)
- higher temperature (T >4 K)
- higher measurement current ($I > 100 \mu A$)



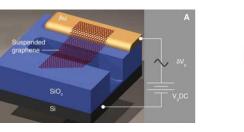
[F. Lafont et al, Nat. Commun. 6, 6806 (2015)]


Importance of graphene quality: grain boundaries in CVD graphene can create a network of conductive paths

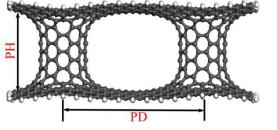
[A. Cumming et al., PRB 90, 161401 (2014)]


Mechanics

Strain Sensors



[Q. Sun et al., Adv. Mat. 27, 3411 (2015)]


Piezoelectric generators

Resonators and mass detection

[J. S. Bunch et al., Science 315, 490 (2007)]

Sensitivity 1 yg (10⁻²⁴ g) Mass responsivity 0.34 GHz/yg

[K. Duan et al., Scient. Report. 7, 14012 (2017)]

Mechanical reinforcement

Conclusion

- 2D materials represent an **amazing discovery** in material science
- They attracted much interest for both fundamental physics and applications
- Many new 2D materials are to be predicted, exfoliated or synthetized
- van der Waals coupling allows the engineering of vertical heterostructures with specific properties
- Large variety of applications in different fields
- Material quality and fabrication techniques are critical issues for many applications
- ...there is still a lot to do

Thanks for your attention!